2020/TDC/ODD/SEM/ PHSH-503/099

TDC Odd Semester Exam., 2020 held in July, 2021

PHYSICS

(Honours)

(5th Semester)

Course No. : PHSH-503

(Quantum Mechanics)

 $\frac{Full Marks: 35}{Pass Marks: 12}$

Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- (a) Discuss photoelectric effect as evidence of corpuscular theory of light.
 - (b) What is the work function of a metal if the threshold wavelength for it is 580 nm?

10-21**/782**

2

(2)

2.	(a)	Explain the result of Davisson-Germer experiment and discuss its significance.	4
	(b)	Explain complementary principle.	3
		UNIT—II	
3.	(a)	State Heisenberg's uncertainty principle.	2
	(b)	By using the uncertainty principle, show that an electron cannot exist within the nucleus.	5
4.	(a)	Obtain the radius of Bohr orbit by using the uncertainty principle.	4
	(b)	Use the uncertainty principle to estimate the size of the hydrogen atom from the following data : $e \ 1 \ 6 \ 10^{-19} \ C$	3
		$m 90 10^{-31} \text{ kg}$	
		\hbar 1 05 10 ³⁴ J-s	
		UNIT—III	
5.	(a)	What do you mean by Schrödinger equation in time-dependent and time- independent forms? Give the physical interpretation of wave function.	3
10-2	21 /78	32 (Continue	d)

- (b) Define Hermitian operators. Show that the operators $i\frac{d}{dx}$ and $\frac{d^2}{dx^2}$ are Hermitian. 1+3=4
- **6.** Define angular momentum operator. Show that $[L_x, L_y]$ $i\hbar L_z$. 1+6=7

UNIT—IV

- **7.** A particle moving in an one-dimensional potential, is given by
 - V 0 for x 0 and V V_0 for x 0
 - (a) Write down the Schrödinger equation for the particle and solve it.
 - (b) Find the reflection and transmission coefficients for the case 0 E V_0 , where E is the total energy of the particle. 4+3=7
- 8. Write down the Schrödinger equation for a free particle in one-dimensional infinite potential well and calculate its eigenvalues and normalized eigenfunctions.
 7

(4)

UNIT-V

- **9.** Write the Schrödinger equation for hydrogen atom in spherical polar coordinates and split it into the radial, polar and azimuthal parts.
- **10.** Solve the radial part of the Schrödinger equation for the hydrogen atom to obtain the energy eigenvalues and eigenfunctions.

 $\star \star \star$

10-21**/782**

10-21—PDF**/782**

2020/TDC/ODD/SEM/ PHSH-503/099

7

7