2020/TDC/ODD/SEM/
 PHSH-503/099

TDC Odd Semester Exam., 2020
held in July, 2021

PHYSICS
(Honours)
(5th Semester)
Course No. : PHSH-503
(Quantum Mechanics)

$$
\begin{aligned}
& \frac{\text { Full Marks : } 35}{\text { Pass Marks : } 12} \\
& \text { Time : } 2 \text { hours }
\end{aligned}
$$

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit
UnIT-I

1. (a) Discuss photoelectric effect as evidence of corpuscular theory of light.
(b) What is the work function of a metal if the threshold wavelength for it is 580 nm ?
2. (a) Explain the result of Davisson-Germer experiment and discuss its significance.
(b) Explain complementary principle.
UNIT-II
3. (a) State Heisenberg's uncertainty principle.
(b) By using the uncertainty principle, show that an electron cannot exist within the nucleus.
4. (a) Obtain the radius of Bohr orbit by using the uncertainty principle.
(b) Use the uncertainty principle to estimate the size of the hydrogen atom from the following data :

$$
\begin{aligned}
e & =1.6 \times 10^{-19} \mathrm{C} \\
m & =9.0 \times 10^{-31} \mathrm{~kg} \\
\hbar & =1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}
\end{aligned}
$$

UNIT-III
5. (a) What do you mean by Schrödinger equation in time-dependent and timeindependent forms? Give the physical interpretation of wave function.
(b) Define Hermitian operators. Show that the operators $i \frac{d}{d x}$ and $\frac{d^{2}}{d x^{2}}$ are Hermitian. $\quad 1+3=4$
6. Define angular momentum operator. Show that $\left[L_{x}, L_{y}\right]=i \hbar L_{z}$. $1+6=7$
UniT—IV
7. A particle moving in an one-dimensional potential, is given by

$$
V=0 \text { for } x<0 \text { and } V=V_{0} \text { for } x \geq 0
$$

(a) Write down the Schrödinger equation for the particle and solve it.
(b) Find the reflection and transmission coefficients for the case $0<E<V_{0}$, where E is the total energy of the particle. $4+3=7$
8. Write down the Schrödinger equation for a free particle in one-dimensional infinite potential well and calculate its eigenvalues and normalized eigenfunctions.

Unit—V

9. Write the Schrödinger equation for hydrogen atom in spherical polar coordinates and split it into the radial, polar and azimuthal parts.
10. Solve the radial part of the Schrödinger equation for the hydrogen atom to obtain the energy eigenvalues and eigenfunctions.
