2020/TDC/ODD/SEM/ ECOH-502 (A/B)/369

TDC Odd Semester Exam., 2020 held in July, 2021

ECONOMICS

(Honours)
(5th Semester)
Course No. : ECOH-502
$\frac{\text { Full Marks : } 50}{\text { Pass Marks : } 17}$
Time : 2 hours

The figures in the margin indicate full marks
for the questions
Arts students will answer Option-A and
Science students will answer Option-B

$$
\begin{gathered}
\text { OPTION-A } \\
(\text { For Arts Students) }
\end{gathered}
$$

Course No. : ECOH-502 (A)

(Statistics for Economics-I)

Answer five questions, taking one from each Unit
UNIT—I

1. (a) State the essential points to be observed in drafting a questionnaire.
(b) What is tabulation of data? Mention five essential requirements of a good table.
$1+5=6$
2. (a) Define data. Distinguish between primary data and secondary data. $1+3=4$
(b) Draw the histogram and frequency polygon of the distribution given below: 6

Weight (gm)	110-119	120-129	130-139	140-149
Frequency	5	7	12	20
Weight (gm)	150-159	160-169	170-179	180-189
Frequency	16	10	7	3

Unit—II
3. (a) Show that $A M \geq G M \geq H M$.
(b) Calculate the coefficient of skewness for the following frequency distribution of weekly wages :

Wages $(₹)$	$:$	Below 30	$30-40$	$40-50$
No. of workers	$:$	5	7	18
Wages $(₹)$	$:$	$50-60$	$60-80$	above 80
No. of workers	$:$	32	28	10

4. (a) Calculate the median and mode of the following :

Annual Sales (₹ ${ }^{\prime} 000$)	Frequency	
Less than 10	4	
$"$	$"$	20
$"$	$"$	30
$"$	$"$	40
$"$	$"$	50
$"$	$"$	60

Is it possible to calculate the arithmetic mean? If possible, calculate it.
(b) Standard deviation is independent of change of origin but depends on scale. Justify.
Unit-III
5. (a) Show that correlation coefficient is independent of change of origin and scale.
(b) Given that $r_{x y}=0 \cdot 6, \operatorname{cov}(X, Y)=7 \cdot 2$ and $\operatorname{var}(Y)=16$, find σ_{x}.
(c) Marks secured by five students in Mathematics and Statistics are given below :

Mathematics	$:$	76	96	86	80	82
Statistics	$:$	62	76	86	66	70

Calculate the coefficient of correlation using appropriate method.
6. (a) Explain the difference between Karl Pearson's (product moment) correlation coefficient and rank correlation coefficient.
(b) Explain with example, positive and negative correlations.
(c) The ranks of the ten students in two subjects A and B are as follows :

A	$:$	3	5	8	4	7	10	2	1	6	9

$\begin{array}{llllllllllll}B & : & 6 & 4 & 9 & 8 & 1 & 2 & 3 & 10 & 5 & 7\end{array}$
Calculate the coefficient of rank correlation and interpret the result.

Unit-IV

7. (a) The equations of two regression lines are

$$
x+2 y-5=0 \text { and } 2 x+3 y-8=0
$$

Find \bar{x}, \bar{y} and $r_{x y}$.
(b) Define regression. Show that if one of the regression coefficients is greater than unity, the other must be less than unity.
$2+3=5$
8. (a) Obtain the regression equation X on Y and Y on X from the data given below :

X	6	2	10	4	8	12	15	14	12
Y	9	11	5	8	7	10	9	12	8
	Also find correlation coefficient.							+1=6	

(b) From the following data
$\bar{X}=36, \bar{Y}=85, \sigma_{x}=11, \sigma_{y}=8, r_{x y}=0.66$
obtain the lines of regression. 4
Unit—V
9. (a) Define the following concepts : $2 \times 3=6$
(i) Mutually exclusive events
(ii) Independent events
(iii) Equally likely events
(b) Let X be a random variable with probability distribution

X	$:$	0	1	2	3
$p(x)$	$:$	$\frac{1}{3}$	$\frac{1}{2}$	0	$\frac{1}{6}$

Find the expectations of X and $X^{2} .2+2=4$
OPTION—B
(For Science Students)
Course No. : ECOH-502 (B)
(Elements of Econometrics-I)
Answer five questions, taking one from each Unit
Unit-I

1. (a) Discuss various steps under an econometric investigation.
(b) Add a note on the significance of studying econometrics in modern times.
2. (a) Make a comparison between econometrics and mathematical economics.
(b) Is the knowledge of statistics essential for studying econometrics? Offer justifications in support of your answer.
UniT-II
3. (a) Distinguish between stochastic and non-stochastic relationship with the help of a suitable example.

5
(b) State the properties of mathematical expectation.

5
4. (a) Define the following terms :
(i) Random variable
(ii) Sample space
(iii) Distribution function
(b) Distinguish between probability distribution and frequency distribution. Show that $E(X)=\bar{X}$, where X is a discrete random variable. $\quad 2+2=4$
Unit-III
5. (a) Define sampling distribution of a statistic and its standard error. 4
(b) Write a note on the utility of standard error in statistics.
(c) Why is population mean considered as constant in statistics?
6. (a) Define probability density function of a random variable.
(b) If X is a continuous random variable taking values in the interval $(0,1)$ with the probability density function

$$
f(x)=k x^{2} ; 0 \leq x \leq 1
$$

then find the values of the following :

$$
2+2+3+1=8
$$

(i) K
(9)
(ii) $F(X)$
(iii) $V(X)$
(iv) $V(3 X)$

UNIT-IV

7. Show that ordinary least square (OLS) estimators are best linear unbiased estimator (BLUE).
8. (a) State the important assumptions underlying two-variable classical linear regression model.
(b) Estimate the parameters of a twovariable classical linear regression model by using ordinary least square method (OLSM).
9. Write short notes on any two of the following : $5 \times 2=10$
(a) Prediction of a regression model
(b) Assumptions of a multiple linear regression model
(c) One-tailed test vs. Two-tailed test
10. (a) Define statistical hypothesis.
(b) Distinguish between null hypothesis and alternative hypothesis.
(c) Write a note on hypothesis testing related to slope coefficient of a two-variable linear regression model.

Unit-V

