2020/TDC/ODD/SEM/ PHSH-303/096

TDC Odd Semester Exam., 2020 held in July, 2021

PHYSICS

(Honours)

(3rd Semester)

Course No. : PHSH-303

(Mathematical Physics—II)

Full Marks : 35 Pass Marks : 12

Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- (a) Explain with example, what are 'order' and 'degree' of a differential equation. What is a singular point? 2+1=3
 - (b) Solve the following differential equation : 4

$$(1 \quad x^2)\frac{d^2y}{dx^2} \quad x\frac{dy}{dx} \quad y \quad 0$$

10-21/694

(Turn Over)

(2)

- **2.** (a) Write the condition when a differential equation is homogeneous.
 - (b) Using Frobenius method, solve the following differential equation :

$$x\frac{d^2y}{dx^2} \quad \frac{dy}{dx} \quad xy \quad 0$$

Unit—II

3. Prove the following :

(i) $n P_n$ (2n 1) $x P_{n-1}$ (n 1) P_{n-2} (ii) (2n 1) P_n P_{n-1} P_{n-1} where P_n represents Legendre polynomials. 4+3=7

4. (a) Prove the Rodrigues' formula

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 \quad 1)^n$$
 6

(b) Write the generating function for Legendre polynomial. 1

10-21**/694**

(Continued)

1

6

Unit—III

5. For Bessel's function $J_n(x)$ prove the recurrence relation : $3\frac{1}{2}+3\frac{1}{2}=7$

(i)
$$J_{n-1}(x) \quad J_{n-1}(x) \quad \frac{2n}{x} J_n(x)$$

(ii) $J_{n-1}(x) \quad J_{n-1}(x) \quad 2J_n(x)$

6. (*a*) Prove

$$J_{\frac{1}{2}}(x) \quad \sqrt{\frac{2}{x}} \sin x \qquad 5$$

(b) Write the Bessel's function of first kind. 2

UNIT—IV

7. (a) What is a tensor? What is meant by the rank of a tensor? 2+2=4
(b) Show that the Kronecker delta ⁱ_j is a mixed tensor of rank two. 3
8. (a) What are covariant and contravariant tensors? 4

10-21**/694** (Turn Over)

(4)

(b) If A_{ij} and B_{ij} are two tensors, then prove that

$$A^{ij}B_{ij}$$
 $A_{ij}B^{ij}$ 3

UNIT—V

- 9. (a) Express the complex number $\frac{2}{3}i^{2}$ in polar form. 3
 - (b) Explain 'neighbourhood' and 'continuity'. 2+2=4
- **10.** (*a*) Explain the condition for a function to be analytic. 2
 - (b) Deduce the Cauchy-Riemann conditions in complex analysis.5

* * *

10-21—PDF**/694**

2020/TDC/ODD/SEM/ PHSH-303/096