2020/TDC/ODD/SEM/MTMP-301/264

TDC Odd Semester Exam., 2020 held in July, 2021

MATHEMATICS

(Pass)

(3rd Semester)

Course No. : MTMP-301

(Differential Calculus and Integral Calculus)

 $\frac{Full\ Marks\,:\,50}{Pass\ Marks\,:\,17}$

Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

GROUP-A

(Differential Calculus)

(Marks : 30)

Unit—I

1. (a) If

$$f(x) \quad 3 \quad 2x, \quad \frac{3}{2} \quad x \quad 0$$

$$3 \quad 2x, \quad 0 \quad x \quad \frac{3}{2}$$
then show that $f(x)$ is continuous at
$$x \quad 0.$$

$$10-21/532 \qquad (Turn Over)$$

(2)

(b) If f is differentiable at c and f(c) = 0, then show that

$$\frac{1}{f}$$
 (c) $\frac{f(c)}{\{f(c)\}^2}$ 3

- (c) State and prove Leibnitz's theorem for the *n*th derivative of the product of two functions. 1+4=5
- **2.** (a) Show that the function f(x) |x| is not differentiable at x = 1.
 - (b) Using Cauchy's criterion, show that $\underset{x = 0}{\text{Lt}} \sin \frac{1}{x}$ does not exist. 3

(c) If
$$y \sin(m \sin^{-1} x)$$
, then show that
(i) $(1 \ x^2)y_2 \ xy_1 \ m^2 y \ 0$
(ii) $(1 \ x^2)y_n \ _2 \ (2n \ 1)xy_n \ _1$
 $(m^2 \ n^2)y_n \ 0 \ 2+3=5$

Unit—II

- 10-21**/532**

(Continued)

(3)

(c) Prove that the greatest rectangle to be inscribed in a circle is a square.

3

3

4. (*a*) From the relation

$$f(x) \quad f(0) \quad xf(0) \quad \frac{x^2}{\underline{|2|}}f(x)$$

where 0 1, show that
(i) $\log(1 x) \quad x \quad \frac{x^2}{2}$, if $x \quad 0$
(ii) $\cos x \quad 1 \quad \frac{x^2}{2}$, if $0 \quad x \quad \underline{2}$ 2+2=4

- (b) Expand $\sin x$ in Maclaurin's infinite series.
- (c) Show that $12(\log x \ 1) \ x^2 \ 10x \ 3$ is maximum when $x \ 2$ and minimum when $x \ 3$. $1\frac{1}{2}+1\frac{1}{2}=3$

Unit—III

5. (*a*) If

$$u \quad \log \frac{x^4 \quad y^4}{x \quad y}$$

then show that
$$x - \frac{u}{x} = y - \frac{u}{y} = 3$$
 3

10-21**/532** (Turn Over)

- (b) If $z e^{xy^2}$, $x t\cos t$, $y t\sin t$, then evaluate
 - $\frac{dz}{dt}$ at $t = \frac{1}{2}$ 3
- (c) Prove that the curve

$$\frac{x}{a}^n$$
 $\frac{y}{b}^n$ 2

touches the straight line $\frac{x}{a} = \frac{y}{b} = 2$ at the point (a, b) whatever be the value of n. 4

- 6. (a) State and prove Euler's theorem on the function which is homogeneous of degree n in x, y.
 - (b) If $u \log(x^3 y^3 z^3 3xyz)$, then show that
 - $\frac{u}{x} \quad \frac{u}{y} \quad \frac{u}{z} \quad \frac{3}{x \quad y \quad z} \qquad 3$
 - (c) Prove that in the curve by^2 $(x \ a)^3$ the square of the subtangent varies as the subnormal. 3

- GROUP—B
- (Integral Calculus)
 - (*Marks* : 20)

Unit—IV

7. (a) Prove that

$$\int_{0}^{2a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$

if $f(2a = x) = f(x)$.

(b) Show that

$$\int_{0}^{\overline{2}} \frac{\sin^2 x}{\sin x \cos x} dx \quad \frac{1}{\sqrt{2}} \log(\sqrt{2} \quad 1) \qquad 4$$

(c) Obtain the reduction formula for

$$\int_{0}^{\overline{2}} \sin^{n} x \, dx \qquad 4$$

- **8.** (a) State the fundamental theorem of integral calculus.
 - (b) Evaluate : 3

Lt
$$\frac{1}{n-1}$$
 $\frac{1}{n-2}$... $\frac{1}{n-n}$

10-21**/532**

(Turn Over)

2

(c) Obtain the reduction formula for

 ${\overline{4} \atop 0} \tan^n x \, dx$

and hence find $\frac{4}{0} \tan^6 x \, dx$. 3+2=5

Unit—V

- 9. (a) Find the area bounded by the curve r a(1 cos).
 (b) Find the surface area generated by the
 - (b) Find the surface area generated by the curve $y = a \sin \frac{x}{a}$ extended from x = 0 to x = a on rotating about x-axis. 5
- **10.** (*a*) Find the length of the curve in the first quadrant

$$x^{2/3} y^{2/3} a^{2/3}$$
 5

(b) Show that the volume generated by revolution of the curve $y(a^2 x^2) a^3$ about its asymptote is $\frac{1}{2} a^3$. 5

 $\star \star \star$

10-21—PDF/532

2020/TDC/ODD/SEM/ MTMP-301/264