2020/TDC/ODD/SEM/MTMP-301/264

TDC Odd Semester Exam., 2020
held in July, 2021
MATHEMATICS
(Pass)
(3rd Semester)
Course No. : MTMP-301

(Differential Calculus and Integral Calculus)

$$
\frac{\text { Full Marks : } 50}{\text { Pass Marks : } 17}
$$

Time : 2 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
GROUP—A

(Differential Calculus)

(Marks : 30)
UnIT-I

1. (a) If

$$
\begin{aligned}
f(x) & =3+2 x, \quad-\frac{3}{2}<x \leq 0 \\
& =3-2 x, \quad 0<x<\frac{3}{2}
\end{aligned}
$$

then show that $f(x)$ is continuous at $x=0$.
(b) If f is differentiable at c and $f(c) \neq 0$, then show that

$$
\left(\frac{1}{f}\right)(c)=\frac{-f^{\prime}(c)}{\{f(c)\}^{2}}
$$

(c) State and prove Leibnitz's theorem for the nth derivative of the product of two functions.
2. (a) Show that the function $f(x)=|x-1|$ is not differentiable at $x=1$.
(b) Using Cauchy's criterion, show that $\operatorname{Lt}_{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
(c) If $y=\sin \left(m \sin ^{-1} x\right)$, then show that
(i) $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$
(ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}$ $+\left(m^{2}-n^{2}\right) y_{n}=0 \quad 2+3=5$

UNIT-II
3. (a) Evaluate :

3

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\cot x-\frac{1}{x}}{x}
$$

(b) State and prove Rolle's theorem.
(c) Prove that the greatest rectangle to be inscribed in a circle is a square.
4. (a) From the relation

$$
f(x)=f(0) \neq x f^{\prime}(0)+\frac{x^{2}}{\underline{2}} f^{\prime \prime \prime}(\theta x)
$$

where $0<\theta<1$, show that
(i) $\log (1+x)>x-\frac{x^{2}}{2}$, if $x>0$
(ii) $\cos x>1-\frac{x^{2}}{2}$, if $0<x<\frac{\pi}{2}$
$2+2=4$
(b) Expand $\sin x$ in Maclaurin's infinite series.
(c) Show that $12(\log x+1)+x^{2}-10 x+3$ is maximum when $x=2$ and minimum when $x=3$.
Unit—III
5. (a) If

$$
u=\log \frac{x^{4}+y^{4}}{x+y}
$$

then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3$
(b) If $z=e^{x y^{2}}, x=t \cos t, y=t \sin t$, then evaluate

$$
\begin{equation*}
\frac{d z}{d t} \text { at } t=\frac{\pi}{2} \tag{3}
\end{equation*}
$$

(c) Prove that the curve

$$
\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2
$$

touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b) whatever be the value of n.
6. (a) State and prove Euler's theorem on the function which is homogeneous of degree n in x, y.
(b) If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then show that

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{3}{x+y+z}
$$

(c) Prove that in the curve $b y^{2}=(x+a)^{3}$ the square of the subtangent varies as the subnormal.

(5)

GROUP-B

(Integral Calculus)

(Marks : 20)
UniT-IV
7. (a) Prove that

$$
\begin{aligned}
& \qquad \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x \\
& \text { if } f(2 a-x)=f(x)
\end{aligned}
$$

(b) Show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x=\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)
$$

(c) Obtain the reduction formula for

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x \tag{4}
\end{equation*}
$$

8. (a) State the fundamental theorem of integral calculus.
(b) Evaluate :

$$
\operatorname{Lt}_{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}\right]
$$

(c) Obtain the reduction formula for

$$
\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x
$$

and hence find $\int_{0}^{\frac{\pi}{4}} \tan ^{6} x d x$.
UniT—V
9. (a) Find the area bounded by the curve $r=a(1-\cos \theta)$.
(b) Find the surface area generated by the curve $y=a \sin \left(\frac{x}{a}\right)$ extended from $x=0$ to $x=a \pi$ on rotating about x-axis.
10. (a) Find the length of the curve in the first quadrant

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3}
$$

(b) Show that the volume generated by revolution of the curve $y\left(a^{2}+x^{2}\right)=a^{3}$ about its asymptote is $\frac{1}{2} \pi^{2} a^{3}$.

