2020/TDC/ODD/SEM/PHSP-101/100

TDC Odd Semester Exam., 2020
held in July, 2021
PHYSICS
(Pass)

(1st Semester)

Course No. : PHSP-101
(Mathematical Physics, Mechanics and General Properties of Matter)
$\frac{\text { Full Marks : } 35}{\text { Pass Marks : } 12}$
Time : 2 hours
The figures in the margin indicate full marks
for the questions
Answer five questions, taking one from each Unit
Unit-I

1. (a) Find $\vec{A} \times(\vec{B} \times \vec{C})$ for the following vectors \vec{A}, \vec{B} and \vec{C} :

$$
\begin{aligned}
& \vec{A}=2 \hat{i}-\hat{j}+3 \hat{k} \\
& \vec{B}=-3 \hat{i}+2 \hat{j}-\hat{k} \\
& \vec{C}=-5 \hat{i}-3 \hat{j}-2 \hat{k}
\end{aligned}
$$

(b) Find the angle between the two vectors \vec{A} and \vec{B}, where

$$
\begin{aligned}
& \vec{A}=2 \hat{i}+2 \hat{j}-\hat{k} \\
& \vec{B}=4 \hat{i}-3 \hat{j}
\end{aligned}
$$

2. (a) Give the physical meaning of gradient, divergence and curl.
(b) Find the divergence and curl of the vector \vec{A} given by

$$
\begin{equation*}
\vec{A}=3 x^{2} y z \hat{i}+\sin \left(z^{2}\right) \hat{j}+c y^{2} \hat{k} \tag{4}
\end{equation*}
$$

Unit-II
3. (a) For the two matrices A and B

$$
A=\left[\begin{array}{rr}
1 & 3 \\
4 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
-2 & 1 \\
3 & 4
\end{array}\right]
$$

prove that $A B \neq B A$.
(b) Find the inverse of the matrix A

$$
A=\left[\begin{array}{lll}
1 & 4 & 3 \\
2 & 1 & 2 \\
3 & 0 & 5
\end{array}\right]
$$

4. (a) Give the definitions of an identity matrix, a skew-symmetric matrix and an orthogonal matrix.
(b) Prove that any matrix A can be written as the sum of a symmetric matrix and a skew-symmetric matrix.

UNIT-III
5. (a) State the theorem of moment of inertia for parallel axes.
(b) Find the moment of inertia of a thin uniform rod about an axis passing through its centre and perpendicular to its length.
(c) Hence, apply the theorem of parallel axes to find its moment of inertia about an axis passing through one end of the rod and perpendicular to its axis.
6. (a) What do you mean by Lissajous figures? Also, investigate the conditions under which a circle and an ellipse are obtained.
(b) Describe how you will measure g using a bar pendulum.

UNIT-IV

7. (a) A solid cylindrical wire is fixed at one end, and is twisted by the application of a torque at the other end. Find an expression for the torque per unit twist if L, r and η are the length, radius and rigidity modulus of the wire.
(b) What is a torsional pendulum? Find an expression for the time period of a torsional pendulum of moment of inertia, I and restoring torque per unit twist, C.
8. (a) Find the excess pressure inside a spherical liquid bubble of surface tension T and radius r.
(b) Calculate the work done in spraying a drop of mercury of radius 1 cm into 10^{6} droplets of equal size. Surface tension of mercury is 487 dynes.cm ${ }^{-1}$.
Unit——
9. (a) What is the purpose of carrying out the Michelson-Morley experiment? Describe the result of the experiment.
(b) Prove that for small velocities, the Lorentz transformation equations reduce to the Galilean transformation equations.

(5)

10. (a) What is time dilation? Show that

$$
T=\frac{T_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

where T_{0} is the time measured in rest frame, T is the time measured in a frame moving with a velocity v and c is the velocity of light.
$1+4=5$
(b) Find the energy equivalent of 1 amu in units of MeV .

