2020/TDC/ODD/SEM/PHSH-103/093

TDC Odd Semester Exam., 2020 held in July, 2021

PHYSICS

(Honours)

(1st Semester)

Course No. : PHSH-103

(Geometrical Optics, Waves and Oscillations)

Full Marks : 35 Pass Marks : 12

Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

 (a) State Fermat's principle and apply it for the derivation of laws of reflection at a curved surface. 1+3=4

(b) Two thin convex lenses each of focal length 20 cm are placed coaxially 5 cm apart. Calculate the position of principal and focal planes.

10-21/605

(Turn Over)

(2)

2.	(a)	Derive Lens Maker's formula for a thin convex lens.	3
	(b)	What are the uses of Lens Maker's formula?	2
	(c)	Find focal length of a double concave lens bounded by spherical surfaces of radii of curvature 20 cm each and having refractive index 5/3. The surrounding medium is air.	2
			-

Unit—II

- **3.** (a) What do you understand by spherical aberration?
 - (b) Discuss three methods of minimising spherical aberration.6
- **4.** (a) Explain how transparent sphere acts as an aplanatic surface. 4
 - (b) Discuss how the idea of a transparent sphere acting as an aplanatic surface can be utilized in the construction of Abbe's high power oil immersion objective.

10-21/605

(Continued)

(3)

Unit—III

5.	(a)	Define transverse and angular magnifications.	2
	(b)	Deduce Helmholtz-Lagrange equation.	5
6.	(a)	Explain the construction and principle of working of Huygen's eyepiece.	4
	(b)	State the advantages and disadvantages of Huygen's eyepiece.	3
		UNIT—IV	

- **7.** (a) Find the resultant of two simple harmonic motions of equal periods when they act at right angles to one another.
 - (b) What are Lissajous figures? How will you trace Lissajous figures, when— (i) the periods are equal and (ii) the phase difference is $\frac{1}{4}$? 3
- 8. (a) A system exerting damped simple harmonic motion is subjected to an external periodic force having a frequency without damping. Investigate the forced vibrations and obtain the condition for resonance. Illustrate it by an example.

(4)

(b) What is the expression of amplitude at resonance? 1

Unit—V

- **9.** (a) What do you mean by progressive wave? Deduce the equation of a progressive wave in one dimension. 1+3=4
 - (b) Deduce the relation for energy of a progressive wave. 3
- **10.** (a) Deduce the differential equation of a
plane progressive wave.3
 - (b) Differentiate between wave velocity and group velocity.2
 - (c) For carbon disulphide, $_D$ 1 635. Deduce the group velocity, if

5893 10 ⁸ cm d 1000 Å d 0 0189

 $\star \star \star$

4

10-21—PDF**/605**

2