2020/TDC/ODD/SEM/PHSH-102/092

TDC Odd Semester Exam., 2020 held in July, 2021

PHYSICS

(Honours)

(1st Semester)

Course No. : PHSH-102

(Mathematical Physics-I)

Full Marks : 35 Pass Marks : 12

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT—I

- (a) What is meant by curvilinear coordinate? Define orthogonal curvilinear coordinates. 2+1=3
 - (b) Find the expressions for length and volume elements in orthogonal curvilinear coordinate system.4

10-21**/604** (Turn Over)

(2)

2. (a) What are meant by right-handed and left-handed Cartesian coordinate systems?
(b) Find the expression of unit vectors in curvilinear coordinate system. Show that the unit vectors of cylindrical coordinate system are mutually orthogonal to each other.

Unit—II

- **3.** *(a)* Define vector triple product. Show that vector triple product is not associative. 1+2=3
 - (b) Show that
 - $[\vec{a} \quad \vec{b}, \vec{b} \quad \vec{c}, \vec{c} \quad \vec{a}] \quad [\vec{a}\vec{b}\vec{c}]$
- 4. (a) Define the divergence of a vector point function. Interpret its physical meaning.2+3=5
 - (b) If $\vec{v} = x^2 z \hat{i} = 2y^2 z^2 \hat{j} = xy^2 z \hat{k}$, then find $\vec{v} = \vec{v}$ at the point (1, -1, 1). 2

Unit—III

- **5.** (a) Show that the eigenvalues of a Hermitian matrix are all real. 3
- 10-21**/604**

(Continued)

4

(3)

- (b) Show that any two given vectors corresponding to two distinct eigenvalues of a Hermitian matrix are orthogonal.
- **6.** (a) Define unitary matrix. 1
 - (b) Show that the following matrix is unitary : 3

$$\frac{1}{\sqrt{2}} \quad \frac{i}{\sqrt{2}}$$

$$\frac{i}{\sqrt{2}} \quad \frac{1}{\sqrt{2}}$$

- (c) Find the inverse of the following matrix : 3
 - 1 2 3 4 5 6 6 7 9

UNIT—IV

7. (a) Obtain the relation between beta and gamma functions : 3

$$(m, n) = \frac{(m)}{(m n)}$$

(b) Prove that $(n \ 1) \ n \ (n)$. 2

(c) Evaluate $\int_{0}^{4} \sqrt{x} e^{-\sqrt{x}} dx.$ 2

10-21/604

(Turn Over)

4

8. (*a*) Show that

$$\frac{y^{m-1}}{(1-y)^{m-n}} dy \quad \frac{(m)}{(m-n)} \qquad 3$$

(b) Prove that

0

1 3 5 ... (2*n* 1)
$$\frac{2^n}{\sqrt{}}$$
 n $\frac{1}{2}$ 4

Unit—V

- **9.** (a) What is Fourier series? Evaluate the coefficients of Fourier series. 5
 - (b) State the Dirichlet's conditions associated with the Fourier series. 2
- **10.** (a) Find the Fourier series of f(x) = x for 0 = x = 2.
 - (b) Use Fourier theorem to analyze the square wave in terms of its components. 4

$\star \star \star$

10-21—PDF/604

2020/TDC/ODD/SEM/ PHSH-102/092