2020/TDC/ODD/SEM/PHSH-102/092

TDC Odd Semester Exam., 2020
held in July, 2021
PHYSICS
(Honours)

(1st Semester)

Course No. : PHSH-102
(Mathematical Physics-I)
$\frac{\text { Full Marks : } 35}{\text { Pass Marks : } 12}$
Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
UniT-I

1. (a) What is meant by curvilinear coordinate? Define orthogonal curvilinear coordinates. $2+1=3$
(b) Find the expressions for length and volume elements in orthogonal curvilinear coordinate system.
2. (a) What are meant by right-handed and left-handed Cartesian coordinate systems?
(b) Find the expression of unit vectors in curvilinear coordinate system. Show that the unit vectors of cylindrical coordinate system are mutually orthogonal to each other. $2+3=5$
UniT-II
3. (a) Define vector triple product. Show that vector triple product is not associative.

$$
1+2=3
$$

(b) Show that

$$
[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]
$$

4. (a) Define the divergence of a vector point function. Interpret its physical meaning.
(b) If $\vec{v}=x^{2} z \hat{i}+2 y^{2} z^{2} \hat{j}+x y^{2} z \hat{k}$, then find $\vec{\nabla} \cdot \vec{v}$ at the point $(1,-1,1)$.
Unit—III
5. (a) Show that the eigenvalues of a Hermitian matrix are all real. 3
(b) Show that any two given vectors corresponding to two distinct eigenvalues of a Hermitian matrix are orthogonal.
6. (a) Define unitary matrix.
(b) Show that the following matrix is unitary :

$$
\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

(c) Find the inverse of the following matrix:

$$
\begin{aligned}
& \qquad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
6 & 7 & 9
\end{array}\right] \\
& \text { UNIT-IV }
\end{aligned}
$$

7. (a) Obtain the relation between beta and gamma functions :

$$
\beta(m, n)=\frac{\Gamma(m) \cdot \Gamma(n)}{\Gamma(m+n)}
$$

(b) Prove that $\Gamma(n+1)=n \Gamma(n)$.
(c) Evaluate $\int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} d x$.
8. (a) Show that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{y^{m-1}}{(1+y)^{m+n}} d y=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \tag{3}
\end{equation*}
$$

(b) Prove that

$$
\begin{equation*}
1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)=\frac{2^{n}}{\sqrt{\pi}} \Gamma\left(n+\frac{1}{2}\right) \tag{4}
\end{equation*}
$$

UniT-V
9. (a) What is Fourier series? Evaluate the coefficients of Fourier series.
(b) State the Dirichlet's conditions associated with the Fourier series.
10. (a) Find the Fourier series of $f(x)=x$ for $0<x<2 \pi$.
(b) Use Fourier theorem to analyze the square wave in terms of its components.

