## 2020/TDC/ODD/SEM/PHSH-101/091

TDC Odd Semester Exam., 2020
held in July, 2021

PHYSICS
( Honours )

## (1st Semester )

Course No. : PHSH-101

## ( Mechanics and General Properties of Matter )

$\frac{\text { Full Marks : } 35}{\text { Pass Marks : } 12}$
Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
UNIT—I

1. (a) Distinguish between inertial frame of reference and non-inertial frame of reference.
(b) Derive the transformation equation of force in rotational frame of reference.
2. (a) What is a conservative force? State the properties of a conservative force. $\quad 1+3=4$
(b) Show that the force

$$
\vec{F}=y z \hat{i}+z x \hat{j}+x y \hat{k}
$$

is a conservative force.
Unit—II
3. What are the elastic and inelastic collisions? Find the expression of velocities of two bodies after elastic collision in a laboratory frame.
4. What do you mean by the centre of mass frame of reference? Show that the centre of mass of a system of particles moves as if it were a particle of mass equal to the total mass of the system, subjected to the external forces applied to the system.
UniT—III
5. Define angular momentum of a particle. Show that the time rate in change of angular momentum of a particle is equal to the torque acting on it. Prove that for a central force, the angular momentum is conserved.

$$
1+3+3=7
$$

6. (a) State and prove the theorem of perpendicular axes in connection with moment of inertia. $\quad 1+3=4$
(b) Calculate the moment of inertia of a cylinder about its axis.
UniT—IV
7. (a) What do you mean by gravitational potential at a point? Obtain an expression for the gravitational potential at a point due to a circular disc. $1+3=4$
(b) How would you determine the value of acceleration due to gravity by means of Kater's pendulum?
8. What are Young's modulus $Y$, bulk modulus $K$ and the modulus of rigidity $\eta$ ? Show that

$$
\frac{3}{\eta}+\frac{1}{K}=\frac{9}{Y}
$$

$$
3+4=7
$$

UniT—V
9. (a) What is surface tension? Find the expression for the excess pressure inside a bubble of radius $r$. $1+4=5$
(b) Calculate the excess pressure inside a soap bubble of radius $3 \times 10^{-3} \mathrm{~m}$. Surface tension of soap solution is $20 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.
10. Define coefficient of viscosity of a liquid and find its dimensions. Discuss the Poiseuille's method as applied in the determination of viscosity of a liquid.

