2020/TDC/ODD/SEM/ ECOH-103 (A/B)/364

TDC Odd Semester Exam., 2020

 held in July, 2021
ECONOMICS

(Honours)
(1st Semester)
Course No. : ECOH-103

$$
\frac{\text { Full Marks : } 50}{\text { Pass Marks : } 17}
$$

Time : 2 hours
The figures in the margin indicate full marks for the questions

Arts students will answer Option-A and
Science students will answer Option-B
OPTION—A
(For Arts Students)
Course No. : ECOH-103 (A)
(Mathematics for Economics-I)
Answer five questions, selecting one from each Unit
Unit-I

1. (a) Given $A=\{2,5,7,9\}, B=\{5,6,7\}$ and $C=\{2,7,9\}$. Answer the following : $1 \times 5=5$
(i) Find power set of B.
(ii) Find all subsets of A.
(iii) Is $A \cap(B \cup C)=(A \cap B) \cup C$?
(iv) Find $B \times C$.
(v) Find $(A-B) \cup(B-A)$.
(b) If $X=\{a, b\}$ and $Y=\{x, y\}$, prove that

$$
X \cdot Y \neq Y \cdot X
$$

(c) Show $(A \cup B)$ and $(A \cup B)^{\prime}$ with the help of Venn diagram, where

$$
\begin{align*}
& A=\{1,2,3,4,5\} \\
& B=\{4,5,6,7\} \\
& U=\{0,1,2,3,4,5,6,7,8,9\} \tag{2}
\end{align*}
$$

2. (a) Define function. Distinguish between domain and range of a function with example.
(b) In a class of 25 students of Economics and Statistics, 12 students have taken Economics. Out of these, 8 have taken Economics but not Statistics. Find the number of students who have taken Economics and Statistics and those who have taken Statistics but not Economics.
(c) Let $A=\{1,2,3\}, \quad B=\{3,4\} \quad$ and $C=\{4,5,6\}$. Find the following : 2
(i) $A \times(B \cap C)$
(ii) $(A \times B) \cap(A \times C)$
Unit-II
3. (a) Show that

$$
\log _{5} \sqrt{5 \sqrt{5 \sqrt{5 \cdots \infty}}}=1
$$

(b) If $5{ }^{4} P_{r}=6{ }^{5} P_{r-1}$, then find r.
(c) Prove that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1 \tag{3}
\end{equation*}
$$

(d) Find $\frac{d y}{d x}$, when $y=\log \left(5-2 x+3 x^{2}\right)$.
4. (a) What is meant by continuity of a function?
(b) Find $\frac{d y}{d x}$ of the following functions : $2^{1 / 2 \times 2=5}$
(i) $y=\left(2 x^{2}+3\right) e^{-3 x^{2}}$
(ii) $y=4 a^{2}+3 a x^{2}+x^{3}$
(c) Find out the maximum and minimum values of the following function :

$$
y=x^{3}-6 x^{2}+9 x
$$

Unit-III

5. Evaluate the following :
$3+3+4=10$
(i) $\int(5 x+7)^{8} d x$
(ii) $\int \frac{1}{\sqrt{x+2}} d x$
(iii) $\int_{-1}^{3}\left(2 x^{2}+5\right) d x$
6. Evaluate the following :
(i) $\int x^{3} e^{x} d x$
(ii) $\int(2 a x+b)\left(a x^{2}+b x\right)^{7} d x$
(iii) $\int_{1}^{2}\left(2 x^{3}-1\right)^{2}\left(6 x^{2}\right) d x$
Unit-IV
7. (a) Find the value of

$$
\left|\begin{array}{ccc}
b+c & a & a \\
b & c+a & b \\
c & c & a+b
\end{array}\right|
$$

(b) Find the inversion of the following matrix :

$$
A=\left[\begin{array}{lll}
5 & 1 & 1 \\
0 & 2 & 2 \\
3 & 1 & 4
\end{array}\right]
$$

(c) Find the rank of the following matrix : 3

$$
A=\left[\begin{array}{rrr}
6 & 3 & 5 \\
-10 & 2 & 8 \\
5 & 2 & 3
\end{array}\right]
$$

8. (a) If A and B both are square matrices and of the same order as follows

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 2 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

then show that $A B \neq B A$.
(b) If
$A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$
find a and b.
4
(c) If

$$
A=\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right], B=\left[\begin{array}{ll}
3 & 1 \\
2 & 5
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

then show that $(A B C)^{\prime}=C^{\prime} B^{\prime} A^{\prime}$.
Unit-V
9. (a) Solve the following system of equations by matrix inversion :

$$
\begin{array}{r}
5 x+y+z=1 \\
2 x+2 z+2=0 \\
3 x+y+4 z=4
\end{array}
$$

(b) Use Cramer's rule to solve the following equations :

$$
\begin{aligned}
p_{1}+p_{2}+p_{3} & =6 \\
p_{1}+2 p_{2}+p_{3} & =8 \\
2 p_{1}+p_{2}+3 p_{3} & =13
\end{aligned}
$$

10. (a) For what value of k, do equations

$$
\begin{aligned}
2 x-3 y+7 z & =0 \\
5 x+4 y-2 z & =-3 \\
x-13 y+k z & =9
\end{aligned}
$$

have not a unique solution?
(b) Using Cramer's rule, solve the following market model :

$$
\begin{aligned}
Q_{d} & =10-0.4 p \\
Q_{s} & =-3+0.6 p \\
Q_{d} & =Q_{s}
\end{aligned}
$$

OPTION—B

(For Science Students)

Course No. : ECOH-103 (B)

(Elements of Mathematical

Economics-I)

Answer five questions, selecting one from each Unit
Unit-I

1. (a) Define symmetric matrix. Give one example of symmetric matrix. $\quad 1+1=2$
(b) Find the inverse of the following matrix : 5

$$
A=\left[\begin{array}{lll}
1 & 4 & 3 \\
4 & 2 & 1 \\
3 & 2 & 2
\end{array}\right]
$$

(c) Solve the following equations system by using Cramer's rule :

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}=13 \\
& 9 x_{1}-3 x_{2}=21
\end{aligned}
$$

2. (a) Given the marginal cost function

$$
\mathrm{MC}=Q^{2}-4 Q+3
$$

Find the level of output Q at which the average variable cost (AVC) will be minimum.
(b) Integrate :

$$
2^{1 / 2} \times 2=5
$$

(i) $\int_{0}^{1} x^{3} \sqrt{1+3 x^{4}} d x$
(ii) $\int_{1}^{3} 5 x e^{x+2} d x$
UniT-II
3. (a) What is Engel curve? Illustrate graphically the deviation of Engel curve.

$$
2+5=7
$$

(b) Suppose weekly income (m) of an individual increases from $₹ 5,000$ to $₹ 6,000$ and his weekly demand for petrol (Q) increases from 20 litres to 25 litres. Estimate income elasticity of demand.
4. Given the demand and supply functions :

$$
\begin{aligned}
& Q_{d}=a-b P+\frac{\delta d P}{d t}(a, b>0) \\
& Q_{s}=c+d P(c, d>0)
\end{aligned}
$$

Obtain the time path of price P_{t} assuming that the rate of change of price over time is directly proportional to excess demand. Also indicate the restriction on the value of δ to ensure dynamic stability.
UNIT—III
5. (a) Suppose a short-run total cost function of output Q is

$$
C=Q^{3}-3 Q^{2}+15 Q+27
$$

Find average cost (AC) and marginal cost (MC).
(b) Show that Cobb-Douglas production function exhibits constant returns to scale.
6. (a) State and illustrate the relationship between total product (TP), average product (AP) and marginal product (MP) with the help of a suitable diagram.
(b) Derive the expression of price elasticity of demand to show the relationship between AR, MR and elasticity.
Unit—IV
7. (a) How would you determine the short-term equilibrium of a monopoly firm?
(b) Let the demand function of a firm under monopolistic competition is given by

$$
P=118-3 Q+4 \sqrt{A}
$$

(11)

UniT-V

9. What is Gini coefficient? State the relative merits and demerits and three limitations of Gini's coefficient as a measure of income inequality.

$$
3+2+2+3=10
$$

10. Write short notes on the following : $5 \times 2=10$
(a) Lorenz curve
(b) Pareto's law of income distribution
