2020/TDC/ODD/SEM/MTMP-101/263

TDC Odd Semester Exam., 2020 held in July, 2021

MATHEMATICS

(Pass)

(1st Semester)

Course No.: MTMP-101

(Classical Algebra and Trigonometry)

Full Marks: 50
Pass Marks: 17

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

GROUP—A

(Classical Algebra)

(*Marks* : 30)

Unit—I

1. (a) If
$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
, then show that

$$adj(adj A) = A$$

2

(2)

(b) Find the rank of the matrix

$$A = \begin{pmatrix} 1 & -2 & 4 & 0 \\ 0 & 3 & 2 & 1 \\ 1 & -2 & 4 & 0 \\ 0 & 3 & 2 & 1 \end{pmatrix}$$

(c) Solve the following by matrix inversion method:

$$x+y+z=6$$
$$x-y+z=2$$
$$2x-y+3z=9$$

2. (a) If A and B are two invertible square matrices of the same order, then prove that AB is also invertible and that

$$(AB)^{-1} = B^{-1}A^{-1}$$
 1+2=3

- (b) State and prove Jacobi's theorem.
- (c) Reduce the following matrix to normal form:

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
-2 & -3 & -1
\end{pmatrix}$$

4

4

4

UNIT—II

3. (a) If α , β , γ are the roots of the equation $x^3 - px^2 + qx - r = 0$, then find the value of

$$\sum \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$$

4

3

3

(b) Solve the following by Cardan's method:

$$x^3 - 12x + 65 = 0$$

(c) If a_1, a_2, \dots, a_n be n numbers in AP, then prove that

$$a_1 a_2 \cdots a_n < \left(\frac{a_1 + a_n}{2}\right)^n$$

4. (a) Solve the equation

$$x^3 - 3x^2 - 6x + 8 = 0$$

given that the roots are in AP.

(b) If α , β , γ are the roots of the equation $x^3 - ax^2 + bx - c = 0$

then find the equation whose roots are

$$\beta \gamma + \frac{1}{\alpha}, \ \gamma \alpha + \frac{1}{\beta}, \ \alpha \beta + \frac{1}{\gamma}$$

(c) If x + y + z = 1, then prove that (1 - x)(1 - y)(1 - z) > 8xyz

UNIT—III

- **5.** (a) Prove that every convergent sequence is bounded. Give an example to show that the converse is not true. 3+1=4
 - (b) Show that the sequence $\{x_n\}$, where

$$x_n = \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

is convergent.

(c) Discuss the convergence of the series

$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots \text{ to } \infty$$

6. (a) Show that the sequence

$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, ...

is convergent and hence find its limit.

- (b) State and prove ratio test for convergence of an infinite series. 4
- (c) Test the convergence of the series

$$\frac{1}{1.2^2} + \frac{1}{2.3^2} + \frac{1}{3.4^2} + \dots \text{ to } \infty$$

10-21/493

(Turn Over)

10-21/493

(Continued)

3

3

3

(6)

GROUP-B

(Trigonometry)

(*Marks* : 20)

UNIT—IV

7. Prove that (a)

$$\left(\frac{1+\cos\theta+i\sin\theta}{1+\cos\theta-i\sin\theta}\right)^n = \cos n\theta + i\sin n\theta$$

- Expand $\cos x$ in ascending powers of x. 4
- Prove that (c)

$$\log(\alpha + i\beta) = \frac{1}{2}\log(\alpha^2 + \beta^2) + i\tan^{-1}\left(\frac{\beta}{\alpha}\right)$$
 3

(a) Solve the equation

$$x^7 + x^4 + x^3 + 1 = 0$$

Prove that

$$\frac{1}{6}\sin^3 x = \frac{x^3}{3!} - \frac{x^5}{5!}(1+3^2) + \frac{x^7}{7!}(1+3^2+3^4) + \cdots$$

Show that i^i is a pure real number. Find its principal value.

UNIT-V

- (a) State and prove Gregory's series.
 - (b) If $x + iy = \tan(\alpha + i\beta)$, then prove that

$$x^2 + y^2 - 2y \coth 2\beta + 1 = 0$$
 3

4

Find the sum of the series

$$\sin\theta - \frac{1}{2}\sin 2\theta + \frac{1}{3}\sin 3\theta - \frac{1}{4}\sin 4\theta + \dots \text{ to } \infty$$

10. (a) If θ lies between 0 and π /2, then prove that

$$\tan^{-1}\left(\frac{1-\cos\theta}{1+\cos\theta}\right) = \tan^{2}\left(\frac{\theta}{2}\right) - \frac{1}{3}\tan^{6}\left(\frac{\theta}{2}\right)$$
$$+ \frac{1}{5}\tan^{10}\left(\frac{\theta}{2}\right) - \dots \text{ to } \infty$$

If $\cosh x = \sec \theta$, then prove that

$$\tanh^2\left(\frac{x}{2}\right) = \tan^2\left(\frac{\theta}{2}\right)$$

(c) Show that

10-21—PDF**/493**

$$\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + \cdots +$$

$$\sin\{\alpha + (n-1)\beta\} = \frac{\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}\sin\{\alpha + (n-1)\beta\}$$

* * *

2020/TDC/ODD/SEM/ MTMP-101/263

3